Few Shot Learning


Few-shot learning is a machine-learning paradigm where models are trained with limited labeled data.

Unlocking Prototype Potential: An Efficient Tuning Framework for Few-Shot Class-Incremental Learning

Add code
Feb 05, 2026
Viaarxiv icon

Are Open-Weight LLMs Ready for Social Media Moderation? A Comparative Study on Bluesky

Add code
Feb 05, 2026
Viaarxiv icon

Scalable and General Whole-Body Control for Cross-Humanoid Locomotion

Add code
Feb 05, 2026
Viaarxiv icon

Cross-Domain Few-Shot Segmentation via Multi-view Progressive Adaptation

Add code
Feb 05, 2026
Viaarxiv icon

Boosting SAM for Cross-Domain Few-Shot Segmentation via Conditional Point Sparsification

Add code
Feb 05, 2026
Viaarxiv icon

TADS: Task-Aware Data Selection for Multi-Task Multimodal Pre-Training

Add code
Feb 05, 2026
Viaarxiv icon

AirGlove: Exploring Egocentric 3D Hand Tracking and Appearance Generalization for Sensing Gloves

Add code
Feb 05, 2026
Viaarxiv icon

Visuo-Tactile World Models

Add code
Feb 05, 2026
Viaarxiv icon

CAST-CKT: Chaos-Aware Spatio-Temporal and Cross-City Knowledge Transfer for Traffic Flow Prediction

Add code
Feb 04, 2026
Viaarxiv icon

HoRD: Robust Humanoid Control via History-Conditioned Reinforcement Learning and Online Distillation

Add code
Feb 05, 2026
Viaarxiv icon